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1. INTRODUCTION

e

5 ¥y Finite element computations in structural mechanics usually

i have two purposes: (1) to determine the stress and

¥ displacement fields and (2) to determine the values of certain

¥

functionals defined on displacement fields as, for example, the
stress intensity factors, satresses at specific points,

ot reactions, etc. Computations of these values involve the
finite element solution. For example, the stress components
are often computed at the Gauss pointa of the elements and the

PO S
T,
C A L

stresses at any other points are then computed by the
. interpolation technique, the stress intensity factors is
determined by the J-integral or curve fitting technique,
 BE etc. We shall refer to these operations as postprocessing.
t9)
i

Usually the values of these functionals are needed t5 be known
with higher accuracy and reliability than the displacement or

gtress field itself.

R
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grant number NOOO14-77-C-0623.

2Partially supported by the O0ffice of Naval Research under
grant number NOOO14-81-K-0625.




Assuming that we have the finite element solution and wish to
determine certain functional values the following questions

ye arise:
%& 1) What should the relationship be between the computa-
N tional effort spent on the finite element solution and the
@é effort spent on postprocessing: 1Is it better to use a very
o simple and inexpensive postprocessing technique as for example
. direct evaluation of the stresses from the finite element
B solution in the desired points or should one select a more
z expensive technique. Of course we have to relate the answer to
3 the achieved accuracy and to the reliability and robustness of
ﬁis the postprocessing procedures under consideration.
' : 2) Given a finite element solution, what is the largest
T accuracy of the functional values one can achieve by the
A ‘ postprocessing technique. In other words, what is the maximal

information contained in the finite element solution which
could be used for the extraction of the desired value.

3) How do the various versions of the finite element
method, i.e., the h-~version, the p-version and the h-p
} version bear on the importance of proper selection of the
T postprocessing techniques.

)

W] . . . .
2 These questions are discussed in some details.
&

2. THE EXTENSION OPERATORS. THE h, p AND h-p VERSIONS OF
THE FINITE ELEMENT METHOD

Q{ There are three versions of the finite element methods based on
¥ the common variational (energy) principle. They are charac-
terized by the systematic selection (extension) of the finite
element spaces leading to the convergence of the finite element
solutions to the exact one. ‘

»

K

5
-
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The h-version is the classical and most commonly used method of
extension: the polynomial degree of elements p 1is fixed and
mesh refinement is used for controlling the error of approxi-
mation (h refers to the size of the element). Typically the

5

IR

~§g polynomial degree of elements is low, usually p=1 or 2.

3 y Proper selection of the mesh and its refinement strongly

o influences the error and its dependence on the computational

e, effort.

A . In the p—-version the mesh is fixed and the polynomial degree of

Fu . elements is increased either uniformly or selectively over the

:;5\:‘ mesh.

ég The h-p version combines the h and p-versions, i.e., error
reduction is achieved by a proper mesh refinement and con-

' current changes in the distribution of the polynomial degree of

elements.

The performance of the various extension operators can be
compared from various points of view, the most important of
which are human and computer resource requirements in relation

---------------------
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o to the desired level of precision. Such relationships are

X difficult to quantify and are subject due to various factors,
g therefore the performance of the extension operators is usually
{gi related to the number of degrees of freedom N. Of course

iij evaluation of an extension operator would not be meaningful

ey without considering the goals of computation. For example, if
ﬁn only stress intensity factors are desired, then the accuracy of

the computed displacements, reactions or stresses are not of
importance. TIn many cases the computation has multiple goals.

3. THE MODEL PROBLEM

In order to illustrate the essential properties of finite
element solution and

Y axtraction techniques, we
0 X have selected a model

’%ﬁ T problem which represents
e some of key features of a

large class of engineering
problems. Specifically let

;?3 [ ull us consider the plane
%ﬂ strain problem of two-
0N 1 dimensional elasticity
W (homogeneous isotropic
1 material) with ® and v
AR representing the modulus of
e 1 fo—t— elasticity and Poisson
‘3& ratio respectively (E > O,
Fo3. 0 < v< .5). The domain
a5y Figure 1 D, a square panel with a
The model problem crack, is shown in Fig. 1.
-
X We shall be concerned here with problems in which only
Q& tractions are prescribed at the boundary (i.e., first boundary
RS value problem of elasticity). :
} We denote the displacement vector function by u = {u1,u2}
’p and the corresponding stress tensor by
o . T M2
T = o T2 T T
i{£ ’ 21 22
§§? The strain energy functional is
au du, 3u
E 142 1 2
W) = srromsyersy 109G 2 e
su
22
ax?) ]dx1dx2 . (3.1)
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The solution u satisfies the WNavier-Lamée equations. It is

possible to express the solution through two holomorphic
functions o(zg, v(z) using the theory of Muskhelishvili [1].

2u(u1 + iu2) = «¢(z) - z9'(z) - 9(zT (3.2)
where
= ; - E
zZ = X + ix,, w = T kK =3 - 4v (3.3)
and Z = x4 - ix,, Tesp. $'(z) mean conjugate values to =z
and ¢'(z).

The components of the stress tensor are expressed by Kolosov-
Muskhelishvili formulae

Ty f Ty, = 2(¢'(z) + $7(z)) = 4 Re ¢'(2)

= 2(e(z) + 3(z)) (3.4)
Ty = Tyy * 21112 = 2[Z¢"(z) + v'(2)] = 2[Ze'(2) + ¥(z)]
(3.5)
where
o(z) = ¢'(2), v(z) = ¢'(2) (3.6)

and Re ¢'(2z) is the real part of ¢'(z).

The correspondence batween the displacements (and the stress)
field and the functions ¢ and ¢ 1is one to one up to the
constants y and y' in ¢ and ¢, respectively, sabtisfying

the relation y -¥' = 0. -
In our model problem we consider the following (exact) solution Eg
O

o(z) = (1+7i.)z-'l/2 (3.7) )
a(z) = o(z) (3.8) o
a(z) = F(z) + 28'(z) + ¥(z) (3.9)




where ¢(z) = ¢(Z), o'(z) = ¢'(2), ¥(z) = ¥(z).

2
Q(z) is a holomorphic function on D. Punction =z @ is to

be understood as the principal branch of z—1é on DN.
Function ¥(z) is uniquely defined by (3.9) and (3.7) (3.8).
The tractions on the boundary of D are defined by (3.4)
(3.5). It can be readily verified that the two edges of the
crack are traction free.

We will now discuss bthe finite element solution and the
postprocessing technique if the tractions are prescribed on the
boundary of D so that the exact solution to the problem is
given by (3.7)-(3.9). Specificaly we now consider the case W
=1, v=73. The strain energy of the exact solution is: W =
42 .16491240.

4. THE FINITE ELEMENT SOLUTION

We have solved the model problem by the h and p-versions of
the finite element method. The p-version of the finite

p—t——— b —f——e]

Figure 2
The meshes for the p-version, A: Mesh 1, B: Mesh 2

element method was implemented in the experimental computer
program COMET-X developed at the Center for Computational
Mechanics of Washington University in St. Louis [2]. The two
meshes shown in Fig. 2A,B were used. The polynomial degrees
were the same for all elements and ranged from 1 to 8. The
shape functions on trapezoidal elements of mesh 2 were
constructed by blending function technique.

The h-version solution was obtained by means of the computer
program FEARS developed at the University of Maryland (3, 4].
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FEARS uses quadrilateral elements of degree one. The program
18 adaTtive and produces a sequence of nearly optimal meshes.
see [3] [4] [5] [6] [7]. The mesh from this sequence with 319
eleme;ts and number of degrees of freedom N = 617 1is shown in
Fig. 3.

o8
.

Figure 3
The mesh constructed by the adaptive program FEARS

5. ERROR OF THE FINITE ELEMENT SOLUTION MEASURED IN ENERGY
NORM

We denote the exact solution by Yg and the finite element
solution by ugpp. The error of the finite element solution 1is

denoted by ¢,

e = Yy - Uppe
Ve measure the magnitude of the error by the energy nora i-1p,

ey = [W(e)]2. (5.1)
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This measure 18 equivalent to measuring the error in the stress
components by integrals of their squares (the L, norm). In our
case when tractions are specified at the boundary

) < Wy (5.2)

and

ter, = [Wluy) - wlu)]2. (5.3)

The extension operators under consideration monotonically
increase the finite element spaces either by increasing the
degree of elements or refining the mesh. Therefore the energy

norm of the error monotonically decreases. We can write

tetg £ C(N)N-¥ (5.4)

and expect that for properly chosen u the function C(N) is
nearly constant especially for larger N. The number u > O
is the rate of convergence of the error measured in the energy

norm.
It is possible to estimate the value of u. In our case the

rate u 18 governed by the strength of the singularity of the
solution. It can be shown that for the p-version [8],[9]

lel, < C(e)N-( ' =) (5.5)

E

with € > O arbitrarily small and C independent of N.
The h-version using the uniform mesh yields the estimate

rel, < CN'V4 (5.6)

with the rate independent of the degree of elements. The
optimal refinement of the mesh leads to the estimate

velp < cn-P/2 (5.7)

(FEARS uses p = 1) where the rate is independent of the
strength of the singularity.

%ﬁ The h-p version with optimal mesh and p-distribution leads to
X the estimate

- e~ a-
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where 0 = 1/3 independently of the strength of the
singularity and vy > O.

The relative error in the energy norm defined as
ety
l_e"lE'R = T‘_TOTE (5-3)

has been flotted in Fig. 4 on log-log scale for the p-version
(mesh 1,2), for the h-version with
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2:!5, . Figure 4
s Relative error in the energy norm vs degrees of freedom

a0y
- (1) h-version, uniform mesh, (2) h-version, adaptively
" constructed mesh, (3) p-version Mesh 1, (4) p-version

2 ."N' 3
2' Mesh 2

S ’ adaptively constructed mesh and for the h-version with uniform
- mesh. The polynomial degree of elements is also shown in the
P . figure. The shown slopes are the theoretical slopes of the

N rate of convergence [y =1Hh and 14 ]. It is seen that the

;é& observed rate of convergence closely agreea with (5.5)(5.7) .
K3 From (5.4) we can compute C(N) for the p-version. The

3% results are given in Table 1.
T Tables 2 and 3 show analogous results for the h-version. The
2N comparison between Tables 1-3 shows that for 5% accuracy we

g need N = 1770 when using p-version Mesh 2, N = 2290 for
0 h-version with adaptively refined mesh and N = 146000 for h-
O version with uniform mesh.
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TABLE 1
Relationship between IelF R and N for the
p~version, Mesh 2, e 1/2 |

P N elp o CN)/1ugng

1 35 32.61% 2.010

2 95 18.35% 1.816

3 135 15 .894 1.997

4 239 13.24% 2.059

5 347 11.06% 2.061

6 479 9.47% 2.079

1 635 B.27% 2.088

8 815 7.37% 2.099
. TABLE 2
4 Relationship between uelE R and N for the h-version
Lﬁ: with adaptively constructed mesh [u =% |
;Z: N neuE’R C(N)/IuOIE
Wi 57 32.01% 2,055
. 101 26.38% 2.665
W] 143 21.35% 2.562
O 221 16.79% 2.501
A 301 13.61% 2.366
N 617 9.63% 2.394

TABLE 3
Relationship between telg and N for the h-
Iy
version with uniform mesh [u =14 |

* N leIE’R C(N)/IuOIE
51 36.02% .967

R 167 27.07% .974

: 591 19.81% 977

6. COMPUTATION OF THE STRESSES

The finite element method provides the solution u g Wwhich
converges to the exact solution in the energy norm.  We have
seen that the error measured in this norm decreases monoton-
ically and in a very orderly way. We now examine the pointwise
error an stregsses for the h and p-versions. We denote the
error in the stress components as

e e AR A A P XN TR R ""::‘-::'—‘f:‘;i
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(o] (FE]

; eij(x1,x2) = Ty (x1,x2) - Ty (x1,x2) (6.1)
i?ﬁ and the relative error by
.l:'-i

3%

Ll e (xy,%x5)]

e, .(x,,x,) = ij 71’72

S YT
o Tij %10 %e
‘éﬂ

> . where TE?J and rE?EJ are respectively the stress compo-
15 nents corresponding to the exact and finite element solutions.
0o

We will compute the stresses directly from the derivatives of
ﬁEE and the stress-strain law. PFig. 5 shows the relative er.or

N €5 in j at the point (.0,.1) computed by the p-version.

8

|

1
o~
.\‘

P.A 4
AN
REL. ERROR 9,
o
!
N

25 S50 100 200 400 800
2% NUMBER OF DEGREES OF FREEDOM

2
s
(o)

. DEGREE p

10

REL. ERROR %

' *.:‘ |

I0 25 S50 100 200 400 800
NUMBER OF DEGREES OF FREEDOM

Figure 5
3 The relative error of e?j computed by the p-version

1= a) Mesh 1, b) Mesh 2. (1) e$1, (2) egz, (3) e?z
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FPig. 6 shows isometric drawings of the error in oo for
various p values for meshes ! and 2. The error values were
computed on a uniform grid with the grid points (ih,jh) h =
A, 1i,j = - 10, 10. At points other than the grid points, the
values were compubted by linear interpolation.

In the case of the h-version, the error is discontinuous at
the boundary of every element. Therefore we compute the
stresses in the center of every element where increased
accuracy can be expected.

In Fig. 7 we show the level-lines of the error in Too (using

the mesh shown in Fig. 3) in the upper right quarter of the
domain D. The local maxima and minima are shown also in the
figure. The error is large in the neighborhood of the tip of
the crack. The level-lines and the local maxima and minima
depend on the interpolation technique used. Wes see in contrast
to the p-version that the oscillatory behaviour of the error
is not so strong here; nevertheless, it has to be emphasized
that when the stresses are computed everywhere directly from
the displacements, strong oscillatory behaviour will appear in
every element.

The center of the elements are changing with bthe mesh. To
ghow the convergence of the stresses, we selected for the Table
4 the center points which are closest to the tip of the crack
(in the first quarter of D). The table shows the error in %
and the magnitude of the exact values of the stress.

Figure 7
The level lines of the error €55

quarter of D computed by the h-version

of 15, 1in the upper
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TABLE 4
Thg relative error of the stresses in the neighborhood of the
origin.
Coordinates le$1l !egzl le$21
No. of
elements | N X %, BTN RO R
16 51 25 25 35.544 | 19.906 | 20.70%
5.037 3.751 1.553
43 143 | .125 125 33.956 | 10.84% | 15.14%| G
7.124 5.304 21971 2
106 221 3125(<1) | 3125(<1) | 31.01% 6.09% | 12.35% 2
14.251 10.609 | 4.3%| £
(1]
319 617 | mna5(=2) | .125(=2) | 29.71% 2.40%6 | 17.65% 2
28.501 21.218 |. 8.7%
16 51 | .25 25 35.54% | 19.90% | 20.70%
5.037 3. 751 1.553| <
_ Q
64 167 | .25 125 36.34% | 20.01% | 14.526| =
7.924 | s5.304 | 2.497 §
U
256 591 | .625(-2) | .625(-1) 24,468 | 17.16% | 14.008] &
10.076 7.502 3.107| °

To depict the behaviour in a fixed point (.25, .25) we select
the center points closest to it. Table 5 shows the results.

If we desire to compute the stress components in the nodal
point (.25, .25) we have 4 values for disposition and also
their average. Table 6 we shows the relative errors. The
value in the lines 1, 2, 3, 4 are compuved from the elements
ordered counterclockwise starting with the upper-right one.

The line A shows relative error of the average of the stress
values computed in the four elements.

In contrast to the monotonic and orderly behaviour of the error
measured in the energy norm, the accuracy in the stresses is
poor and nonmonotonic, although the stresses are converging in
integral sense (in the energy norm) monotonically. In
addition, the quality of the computed stress components is very

different.




14

TABLE 5

%he relafive error of the stresses in the neighborhood of
e25,.25).

e,

Coordinates le?&l |e§2| Ie?zl
No. of
elenents N X1 X |1£?] |t£g]| le$2l
16 51 .25 25 35.54% | 19.906 | 20.70%
5.037 3.751 1.553 <
(7]
43 143 | .375 375 1.09% 2,106 | 43.51% | =
4.113 3.062 1.268 v
e
106 221 1875 1875 3.89% 8.26% | 40.28% £,
5.817 4.3% 1.79% | 3
L- o
319 617 21875 21875 464% 8128 | 12.12%
5.386 4.010 1.661
5.037 3.751 1.553 o
P>
4.113 3.062 1.268 &
. Uy
256 591 1875 1875 10.20%6 | 10.78% 6.458 | &
5.817 4.3%1 1.7 | °

7. POSTPROCESSING

We have seen that stresses computed directly from finite
element solutions are not accurate. Nevertheless, often the
values of the stresses is the main aim of the computation.

We will show now that by utilizing the analytical structure of
the Navier-lame equations it is possible to compute stresses
with the accuracy comparable to the accuracy of the energy of
the finite element solution (which is the square of the error
measured in the ener normﬁ. We will outline the main idea.

For more, see [8], [9], [10
(x9,1+%p,2) € D and denote by S(xy,e) the disc of

Let x5

radius p centered in x,. PFurther, let D(xy,p) =D
-8(xy,p). See Fig. B. The boundary of D(x,,p) is denoted
by aD(xo,p) = 33 UT where T is the boundary of the disk
S(x.,p) . We now define the extraction (displacement) function

~

!(xo,x) z (w1.w2) which corresponds to the functions ¢, y in

»
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the sense of (3.2) (3.3) and are defined as follows
$(z) = Az - z9)~ 1+ $x(2) (7.1)
TABLE 6
The relative error of bthe stresses in (.25.25)
No. of
R R R
elements N e11% e % e12%
A .0%4 1.60 233.95
] L042 4.97 4.7%5
43 143 2 2.4 6.60 3.38
3 .026 1.76 72.22
4 | 3.09 3.14 64.4 g
03]
A 10.99 7.57 11.16 &
1 4.79 2.3 35.86 o
106 221 2 12.21 2.0 .093 >
3 17.27 17.42 106.43 !
4 9.7 13.01 .49 o
o
A 4.09 5.47 13.42 <
1 1.46 2.68 22.96
319 617 2 4.4 .099 55 .69
3 4.41 13.43 3.88
4 6.07 1.74 28.85 JJ
A 12.12 10.65 17.%
1 19.%37 15.35 13.36
64 167 2 6.75 8.68 5.47
3 5.87 5.94 68.41 e
4 | 17.5 12.63 60.22 @
=
A 8.1 10.13 12.66 E
1 8.10 6.62 13.38 3
256 591 2 5.38 5.05 8.15 “;
3 8.12 13.64 38.71 =
4 10.84 15.84 33.48 =
8(z) = B(z-20)"" + Ex(2) (7.2)
v(z) = E(z) - 29é'(2) (7.3)

where ¢éx(2z) and Ex(z) are arbitrary holomorphic functions
on D (not only on D(xo,p)). Note that ¢, ¥ are
holomorphic on a(x4,p) “for any O < p.

Although the domain D(xo.p) is Aoubly connected, the
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displacement function w defined by (7.1) through (7.3) by
(3.2) is a single valued function and it is an admissible
displacement function.

Denote by T[uJ, olw] the stress tensors associated with the

R LA
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;
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; Fig. 8. The domain D(xo,p).

Wy displacement functions u and w. Denote the outward normal to
R an(xo,p) by n. Then Betti's law can be written in the form

/ (w2 enyas = g (w2l myas . (7.0
3D(XO,D) aD(xO,P)

This equation can be rewritten

ID [(E,T[wjon) - (g,T[uJ-n)]ds
d

}r I‘.‘--. vl

bt

(7.5)

' LA

>
1 K
S

= ] [-(B,T[“J-n) + (y,T[“J-n)]ds
r

The functions ¢, ¢ associated to the solution uy can be
written in the neighborhood of z5:

£

: DY o, W o
S PP rz
" e

&
A
e @

0(z) = ag + ay(z-z9) + 0((z-20)?) (7.6)

{
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I 2

L)

vk "
4 E“,qi'

E(z) = bg + bylz-20) + 0((z-2()?) (7.7)

FE

v(z) = &(z) - z50'(2). (7.8)

Pt
Lo

Using (7.1)-(7.3) and (7.6)~(7.8) in (7.5) and letting p + O
we get

iy M
&

/ (u,T[wJ°n)dS - J (W,T[uj-n)ds
aD 3D

-
¥
o
2

% - & ﬁ'_"'
e

"

g; [b1(KA + A) + 51(KK + R) + a1(1+x)B + 51(1+<)§J. (7.9)

Ei By application of (3.4)-(3.6) we get

4.4

f& 122(§0) = Re(a1 + 51 + b1) (7.11)
1,o(xy) = Imdy . (7.12)
Qé

By proper selection of A, B we can obtain that the right

4% hand side of (7.9) be 4,5 Note that any choice of

A " a ’
éﬁ ¢, and £, in (7.1) and (7.2) does not change the right hand
ﬁ%‘ side of (7.9).

- In our problem when the tractions are prescribed at 3D, the
N2, function g(x) =T uJ-n is given. (7.9) can therefore be

ﬁé written in the form

W3

. F = | (»u ,T[WJ-n)ds -/ (w,g)ds (7.13)
i 3D 3D
ﬁﬁ .
~%3 where TP 1is (for proper choice of A, B) tne exact value of the
wh ] stress component at x = x5. Of course uy 1s not known but
B upg 1is. Therefore we deane

5 ' . [w], -

i34 Fogp = gD (EFE’T n)ds {D (w,g)ds (7.14)
i By subtracting (7.13) (7.14), the error in the extracted

: functional Ppp (provided that integrals are evaluated

a4 exactly) is

¢ F- Fpp = fD (ug - EFE,T["J-n)ds. (7.15)
. ' ?
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Let us analyze now (7.15). To this end, let y = (vy,v5) Dde

the (exact) solution of the problem when tractions T[']-n are
prescribed at 3aD. v #w because ¥ is singular at x = X,

but v 1is not. Existence of Vv 1s guaranteed because T["]-n
savisfy the equilibrium condition. We can write

| (g - upg)stemdas = 2W(yy - pp,v) (7.16)

where W(u,v) is the usual energy scalar product associated
with W(u) defined in (3.1). Using one of the basic property
of the finite element method, namely

Wiy - BFE’!FE) = 0, (7.17)
we obtain from (7.15) (7.16)
F-Fpg = 2W(yo - wpg, ¥ - ¥pgp)

and hence

So far we did not discuss the choice of ¢,(z) and £,(z).

(7.18) shows that ¢, and £, should be selected so that

v - !FE' is at least of the order of '“O - uFE"

If 1y - Vpglg * C0u - ugplp we get |F - Fppl <
Clu, - uPE'% < C(W(uy) - W(ugy)) and the rate of convergence
i8 twice that of the rate of the error measured in the energy

norm. Note that inequality (7.18) is upper bound which
neglects possible cancellation in the energy integral.

8. SELECTION OF THE EXTRACTION FUNCTION

When x4 1is not close to the boundary of D, then we can
select 3, = E, = 0. When x5 is close to 3D, then

4. and £, should be selected so that o[¥)in = 0 on that
part of the boundary which is close to x5. Otherwise, we
would not achieve that 1V - Vpoalp  will be small,

In the following we outline briefly the procedure for

constructing ¢, and §, so that T “len = 0 on the crack
surfaces. To simplify the notation we will write ¢ instead

of ¢, etc.

Define an auxiliary function a(z) on D

- . v e . Nt a
e e T, LIRS . A AN Rt At AT A" e " e e  a Ve T
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a(z) = #8(z) + z8'(2) + ¥(2) (8.1)

Using (3.4) and (3.5) the tractions on the crack surface can be
written as follows

0(z+) + a(z_) (8.2a)

122(z+) - 1112(z+)

122(z_) - it12(z_) o(z_) + n(z+) (8.2b)

where 2z, and 3z_ respectively denote the upper and lower
surface of the crack. Using (7.1)-(7.3) we get

a(z) = -Kz-Fy) "2+2K(2-2) (2~2,) 7 -B(2-F) " +a,(2) (8.3)
where
n,(z) = @,(2) + 28.(2) + v,(2). (8.4)
Setting
a,(z) = o,(2) (8.5)
we obtain
1oz, =it (z) = Qlz) + e (z) + 0,(z) (8.6a)
where
alz) = -Alz-zq)™ + K(z-35) 7
' (B.7)

+ 2K(z - zo)(z - 'z'o)"3 - B(z - Eo)'3 .

Note that Q(z,) = Q(z_). Similarly

oz ) = ityp(z)) = Qlz,) + e,(z) + ou(s).  (B.6D)

Now we select ¢, 80 that
0. (2) +0,(z) = -a(z,). (8.8)
(8.5) and (8.8) define now ¢x and y,. By this selection wve

achieve that 122(z+) = 112(2+) = 122(2_) = 1'12(z+) e 0. The
relation (8.8) can be easily achieved. For example, for
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-1
2" 15 Zg k

Y Ry
4(22 + %f )

¢ = -

we get

1
2
+ zo)

0(z+) + 0(2_) =

(-2,

which is one term in (8.7). Consequently we get the other
terms and combining them (8.8) is achieved.

9. NUMERICAL PERFORMANCE OF THE EXTRACTION TECHNIQUE

We now present the results of computational experiments Dbased
on our model problem and the extraction function described in
Section 8 (using ¢x, £x).

Fig. 9. shows the results analogous to those shown in Fig. 5
but stress components 1t was computed by the extraction
technique. The slope sho&n in the figure shows the rate y = 1
(i.e., the rate of the convergence of the energy and not the
energy norm). Por comparison the error e?z for mesh 2
computed directly (see Fig. 5b) is shown also in Fig. 9. Fig.
10 shows the isometric draw.ngs (in the same scale as in

RELATIVE ERROR %

0 25 50 100 200 400 800
NUMBER OF DEGREES OF FREEDOM

Pigure 9

The relative error of i3 computed by postprocessing of the

p-version for Mesh 1 and Mesh 2. (1) e$1, (2) egz, (3) 8$2
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Fig. 6) of the error in L computed by the postprocessing
technique.

Table 7 shows the relative error e?- in the stresses 1; at
the point (.2§,.25) computed by the ﬁostprocessing techniqle
taking # = E# = O (because the point is not close to the
boundary). This data should be compared with the results of
Table 5 and 6.

TABLE 7

The relative error eR in the stresses rt;j at the point
(.25,.25) computed by postprocessing.

No. of
R R R
elements N €44 € e12
16 51 20.91% 2.51% 12.70% | ¢
43 143 11.40% 13.07% 8.29% | 25
106 221 4.60% 5.92% 3.74% | S 2
319 617 1.47% 2.01% 1.318 | 2
16 51 20.91% 2.51% 12.70% E
64 167 12.51% 14.88% 9.86% | © c
256 591 6.87% 8.90% 6.28% § ke

We see that for adaptive meshes the error is of order N~! and

for uniform meshes of order NJ@ « Similarly, as in the case of
the p-version we see an orderly convergence with the rate as
the square of the error measured in the energy norm (as
theoretically expected).

10. CONCLUSIONS

The shown computations are characteristic in the following

way. The convergence in the energy norm is monotonic and very
orderly. For the smooth solution the p-version is especially
effective. For unsmooth solutions the refinementv of the meshes
in the h-version is very essential.

The convergence of stresses in a fixed point is very "chaotic,"
the accuracy in various components can be very different. The
rate of convergence of the postprocessed values are as the
square of the error measured in the energy norm. In the case
of the h-version, uniform (or piecewise uniform) meshes and
smooth solution the superconvergence occurs in the center of

= the elements. The rate is n2 log h i.e., effectively as the
B ‘ square of the error in energy norm (h). Therefore, the gain
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for the elements of degree 1 is not in the rate of
convergence of the postprocessed value but is in the
magnitude. (Por p > 1 the gain of the postprocessing appears

also in the rate.)

The postprocessing 1S especially important for the p-vers.ion,
although 1t is also essential for the h-version especially for
unsmooth solutions and for general meshes.

11. EFFECTIVITY OF THE POSTPROCESSING TECHNIQUE

In the introduction we raised a number of questions concerning
the postprocessing. We now briefly address these question in
the light of our results. Detailed analysis will be made in a

forthcoming paper.

1) It is cost effective not to save computational effort ,
on a postprocessing procedure especially when not an excessive i
number of extractions is made. The cost of obtaining reliable
and accurate values by postprocessing is much smaller than to
obtain comparable accuracy by increasing p in the p-version
or refine the meshes in the h-version. The postprocessing
usually removes very reliably the "chaotic" behaviour of the
errors in stresses. The effectivity of the postprocessing is
characterized by higher rate of convergence than in the energy

norm.

2) The rate of convergence as the square of the rate of
the error in the energy norm is theoretically the maximal one
which can be directly extracted. The postprocessing technique
we outlined leads to this rate.

3) Developoment and implementation of the postprocessing
techniques in finite element programs is practically not a very
simple task. We mention some aspects:

a) A number of extraction functions must be
developed. Although many analytical solutions of special
problems are very helpful for such development, the
general approach especially for nonhomogeneous material
8till needs further research.

b) Special care must be excercised in the numerical
evaluation of integrals because the extraction function
can have singular character.

¢) The postprocessing technique for nonlinear
problems could be especially important but additional
research is necessary.
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